skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lam, Marco C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Flares produced following the tidal disruption of stars by supermassive black holes can reveal the properties of the otherwise dormant majority of black holes and the physics of accretion. In the past decade, a class of optical-ultraviolet tidal disruption flares has been discovered whose emission properties do not match theoretical predictions. This has led to extensive efforts to model the dynamics and emission mechanisms of optical-ultraviolet tidal disruptions in order to establish them as probes of supermassive black holes. Here we present the optical-ultraviolet tidal disruption event AT 2022dbl, which showed a nearly identical repetition 700 days after the first flare. Ruling out gravitational lensing and two chance unrelated disruptions, we conclude that at least the first flare represents the partial disruption of a star, possibly captured through the Hills mechanism. Since both flares are typical of the optical-ultraviolet class of tidal disruptions in terms of their radiated energy, temperature, luminosity, and spectral features, it follows that either the entire class are partial rather than full stellar disruptions, contrary to the prevalent assumption, or some members of the class are partial disruptions, having nearly the same observational characteristics as full disruptions. Whichever option is true, these findings could require revised models for the emission mechanisms of optical-ultraviolet tidal disruption flares and a reassessment of their expected rates. 
    more » « less
  2. Abstract The optical-ultraviolet transient AT 2021loi is located at the center of its host galaxy. Its spectral features identify it as a member of the Bowen fluorescence flare (BFF) class. The first member of this class was considered to be related to a tidal disruption event, but enhanced accretion onto an already active supermassive black hole was suggested as an alternative explanation. Having occurred in a previously known unobscured active galactic nucleus, AT 2021loi strengthens the latter interpretation. Its light curve is similar to those of previous BFFs, showing a rebrightening approximately 1 yr after the main peak (which was not explicitly identified but might be the case in all previous BFFs). An emission feature around 4680 Å, seen in the preflare spectrum, strengthens by a factor of ∼2 around the optical peak of the flare and is clearly seen as a double-peaked feature then, suggesting a blend of N iii λ 4640 with He ii λ 4686 as its origin. The appearance of O iii λ 3133 and possible N iii λλ 4097, 4103 (blended with H δ ) during the flare further support a Bowen fluorescence classification. Here we present ZTF, ATLAS, Keck, Las Cumbres Observatory, NEOWISE-R, Swift AMI, and Very Large Array observations of AT 2021loi, making it one of the best-observed BFFs to date. It thus provides some clarity on the nature of BFFs but also further demonstrates the diversity of nuclear transients. 
    more » « less
  3. Abstract AT 2019azh is a H+He tidal disruption event (TDE) with one of the most extensive ultraviolet and optical data sets available to date. We present our photometric and spectroscopic observations of this event starting several weeks before and out to approximately 2 yr after theg-band's peak brightness and combine them with public photometric data. This extensive data set robustly reveals a change in the light-curve slope and a possible bump in the rising light curve of a TDE for the first time, which may indicate more than one dominant emission mechanism contributing to the pre-peak light curve. Indeed, we find that theMOSFiT-derived parameters of AT 2019azh, which assume reprocessed accretion as the sole source of emission, are not entirely self-consistent. We further confirm the relation seen in previous TDEs whereby the redder emission peaks later than the bluer emission. The post-peak bolometric light curve of AT 2019azh is better described by an exponential decline than by the canonicalt−5/3(and in fact any) power-law decline. We find a possible mid-infrared excess around the peak optical luminosity, but cannot determine its origin. In addition, we provide the earliest measurements of the Hαemission-line evolution and find no significant time delay between the peak of theV-band light curve and that of the Hαluminosity. These results can be used to constrain future models of TDE line formation and emission mechanisms in general. More pre-peak 1–2 days cadence observations of TDEs are required to determine whether the characteristics observed here are common among TDEs. More importantly, detailed emission models are needed to fully exploit such observations for understanding the emission physics of TDEs. 
    more » « less